
Sparse, Smart Contours to Represent and Edit Images
Supplemental

1 Implementation Details
Our models were implemented in Tensorflow. We will release our trained models and
code. To achieve the editing effects, we built a simple graphical user interface (GUI)
that allows editing the contour map using simple operations such as moving, scaling
or erasing sets of contours. Note that although the user edits the contour map, the
underlying features change in the appropriate manner (for example, if some contours
are removed, then the features associated with those contours are also removed).

Computing Input Representation: Edge probability maps were extracted using [1]
followed by non-maximum suppression as a post processing. The computed maps
were binarized by keeping x percentile of edges, where x is the desired percentage of
nonzero pixels in the binary edge map. We group the edges into contours and filter out
short contours (length less then 10 pixels). Gradients are computed by simple forward
differences.

LFN and HFN: Both LFN and HFN are “U-Nets” [2]. We adopt the notations in [2]
and denote a convolution layer with k filters followed by batch normalization by Ck for
ReLU activation, and Clk for LeakyReLU (slop 0.2). For 256×256 images the number
of filters in the encoder is given by: Cl64-Cl128-Cl256-Cl512-Cl512-Cl512,
hence the spatial resolution of the bottleneck is 4 × 4. The number of filters in each
layer of the decoder is given by: C512-C512-C256-C128-C64-C64 (filters in de-
coder are bigger because of the skip connections). All convolutional filters are size
4× 4, and we use strides of size 2.

Dilated-Patch Discriminator Our discriminator (Fig. 3(c)) is a combination of a
“patch discriminator” [2] and a branch of dilated convolution filters. Let Drk denote
a dilated convolution with sampling rate r, leaky ReLU and k filters. Then our patch
discriminator architecture is given by Cl64-Cl128-Cl256 followed by 4 parallel
dilated convolutions {D2256,D4256,D8256,D12256}, which are concatenated, and
a final convolution layer with a single channel output.

The network used for learning the input representation (see Sec. 4) is similar and
consists of a branch of dilated convolutions, each followed by regular a convolution
layer. That is, {D432− C3,D8256− C3,D12256− C3,D16256− C3}, which are added
to form the final output.

1



Training hyper-parameters and details For each dataset, LFN and HFN were trained
from scratch (weights were initialized from a Gaussian distribution with mean 0 and
standard deviation 0.02). We used Adam optimizer with β = 0.5, ε = 1e−4, and batch
size of 16 in all training runs except when training on 512×512 where we used size of
8. We used learning rate of 0.0002 for the generator, and 0.00002 for the discrimina-
tor, with decay rate of 0.98 every 10000 steps. During training we resized the images
such that the small dimension is at the desired resolution and then randomly cropped
to desired size. The relative weight of the adversarial loss vs. reconstruction loss was
100 in all our experiments.

During the HFN training, the weights of the LFN remained fixed, and we alternate
between stepping the discriminator and generator in ratio of 2:1 in favor of the discrimi-
nator. When working with learned features, the weights feature network remained fixed
during HFN training.

We trained on the VGG dataset at two spatial resolutions: 256×256 and 512×512.
For Birds and Dogs, we used the original train/test splits, and for the VGG dataset we
filtered out low resolution images from the train and test sets, to avoid reconstruction of
JPEG artifacts. The VGG has 30227 samples and was trained for 210 epochs for both
LFN and HFN; CUB Birds has 8855 samples and was trained for 720 epochs; Dogs
dataset has 12000 training samples and was trained for 500 epochs.

Texture Loss We use the texture loss in Section 6.1 to evaluate our reconstructions.
This loss was defined in [3].

References
[1] P. Dollár and C. L. Zitnick. Structured forests for fast edge detection. In ICCV,

2013. 1
[2] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with

conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016. 1
[3] I. Ustyuzhaninov, W. Brendel, L. Gatys, and M. Bethge. What does it take to

generate natural textures? 2016. 2


